Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network

نویسندگان

  • Tao Hu
  • Honggang Qi
  • Jizheng Xu
  • Qingming Huang
چکیده

Cascaded Regression (CR) based methods have been proposed to solve facial landmarks detection problem, which learn a series of descent directions by multiple cascaded regressors separately trained in coarse and fine stages. They outperform the traditional gradient descent based methods in both accuracy and running speed. However, cascaded regression is not robust enough because each regressor’s training data comes from the output of previous regressor. Moreover, training multiple regressors requires lots of computing resources, especially for deep learning based methods. In this paper, we develop a Self-Iterative Regression (SIR) framework to improve the model efficiency. Only one self-iterative regressor is trained to learn the descent directions for samples from coarse stages to fine stages, and parameters are iteratively updated by the same regressor. Specifically, we proposed Landmarks-Attention Network (LAN) as our regressor, which concurrently learns features around each landmark and obtains the holistic location increment. By doing so, not only the rest of regressors are removed to simplify the training process, but the number of model parameters is significantly decreased. The experiments demonstrate that with only 3.72M model parameters, our proposed method achieves the stateof-the-art performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting facial landmarks in the video based on a hybrid framework

To dynamically detect the facial landmarks in the video, we propose a novel hybrid framework termed as detection-tracking-detection (DTD). First, the face bounding box is achieved from the first frame of the video sequence based on a traditional face detection method. Then, a landmark detector detects the facial landmarks, which is based on a cascaded deep convolution neural network (DCNN). Nex...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Evaluation of Two Facial Nerve Landmarks Frequency in Parotidectomy

Background & Aim: Various landmarks are discussed to find the facial nerve during parotid surgery. The surgeon should use existing landmarks for a safe surgical use. To evaluate two new landmarks in parotid surgery, this study was done. Methods & Materials/Patients: This cross-sectional study was conducted on 43 patients with parotid masses, whom were referred to Alzahra and Kashani tertiary...

متن کامل

Facial Landmarks Localization Estimation by Cascaded Boosted Regression

Accurate detection of facial landmarks is very important for many applications like face recognition or analysis. In this paper we describe an efficient detector of facial landmarks based on a cascade of boosted regressors of arbitrary number of levels. We define as many regressors as landmarks and we train them separately. We describe how the training is conducted for the series of regressors ...

متن کامل

3D Facial Landmark Localization Using Combinatorial Search and Shape Regression

This paper presents a method for the automatic detection of facial landmarks. The algorithm receives a set of 3D candidate points for each landmark (e.g. from a feature detector) and performs combinatorial search constrained by a deformable shape model. A key assumption of our approach is that for some landmarks there might not be an accurate candidate in the input set. This is tackled by detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018